
D02 – Ordinary Differential Equations

D02NMF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02NMF is a reverse communication routine for integrating stiff systems of explicit ordinary differential
equations.

2 Specification

SUBROUTINE D02NMF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL,
1 ATOL, ITOL, INFORM, YSAVE, NY2DIM, WKJAC,
2 NWKJAC, JACPVT, NJCPVT, IMON, INLN, IRES,
3 IREVCM, ITASK, ITRACE, IFAIL)
INTEGER NEQ, NEQMAX, ITOL, INFORM(23), NY2DIM, NWKJAC,
1 JACPVT(NJCPVT), NJCPVT, IMON, INLN, IRES,
2 IREVCM, ITASK, ITRACE, IFAIL
real T, TOUT, Y(NEQMAX), YDOT(NEQMAX),
1 RWORK(50+4∗NEQMAX), RTOL(∗), ATOL(∗),
2 YSAVE(NEQMAX,NY2DIM), WKJAC(NWKJAC)

3 Description

D02NMF is a general purpose routine for integrating the initial value problem for a stiff system of explicit
ordinary differential equations,

y′ = g(t, y).

An outline of a typical calling program is given below:

C
C declarations
C

call linear algebra setup routine
call integrator setup routine
IREVCM=0

1000 CALL D02NMF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL,
+ ATOL, ITOL, INFORM, YSAVE, NY2DIM, WKJAC, NWKJAC, JACPVT,
+ NJCPVT, IMON, INLN, IRES, IREVCM, ITASK, ITRACE, IFAIL)
IF (IREVCM.GT.0) THEN
IF (IREVCM. EQ. 8) THEN
supply the Jacobian matrix (i)

ELSE IF(IREVCM.EQ.9) THEN
perform monitoring tasks requested by the user (ii)

ELSE IF(IRECVM.EQ.1.OR.IREVCM.GE.3.AND.IREVCM.LE.5)THEN
evaluate the derivative (iii)

ELSE IF(IREVCM.EQ.10)THEN
indicates an unsuccessful step

ENDIF
GO TO 1000

ENDIF

[NP3390/19/pdf] D02NMF.1

D02NMF D02 – Ordinary Differential Equations

C
C post processing (optional linear algebra diagnostic call
C (sparse case only), optional integrator diagnostic call)
C

STOP
END

There are three major operations that may be required of the (sub)program from which D02NMF is
called on an intermeditate return (IREVCM �= 0) from D02NMF; these are denoted (i), (ii) and (iii)
above.

The following sections describe in greater detail exactly what is required of each of these operations.

(i) Supply the Jacobian Matrix.

The user need only provide this facility if the parameter JCEVAL = ’A’ (or ’F’ if using sparse
matrix linear algebra) in a call to the linear algebra setup routine. If the Jacobian matrix is to be
evaluated numerically by the integrator, then the remainder of section (i) can be ignored.

We must define the system of nonlinear equations which is solved internally by the integrator. The
time derivative, y′, has the form

y′ = (y − z)/(hd)

where h is the current step size and d is a parameter that depends on the integration method in
use. The vector y is the current solution and the vector z depends on information from previous
time steps. This means that d

dy′ () = 1
(hd)

d
dy (). The system of nonlinear equations that is solved

has the form
y′ − g(t, y) = 0

but is solved in the form
r(t, y) = 0,

where the function r is defined by

r(t, y) = (hd)((y − z)/(hd) − g(t, y)).

It is the Jacobian matrix ∂r
∂y that the user must supply as follows:

∂ri

∂yj

= 1 − (hd)
∂gi

∂yj

if i = j,

∂ri

∂yj

= − (hd)
∂gi

∂yj

otherwise,

where t, h and d are located in RWORK(19), RWORK(16) and RWORK(20) respectively and the
array Y contains the current values of the dependent variables. Only the non-zero elements of the
Jacobian need be set, since the locations where it is to be stored are preset to zero.

Hereafter in this document this operation will be referred to as JAC.
(ii) Perform tasks requested by the user.

This operation is essentially a monitoring function and additionally provides the opportunity of
changing the current values of Y, HNEXT (the step size that the integrator proposes to take on the
next step), HMIN (the minimum step size to be taken on the next step), and HMAX (the maximum
step size to be taken on the next step). The scaled local error at the end of a timestep may be
obtained by calling real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ,RWORK(51+NEQMAX),RWORK(51),IFAIL)

C CHECK IFAIL BEFORE PROCEEDING

The following gives details of the location within the array RWORK of variables that may be of
interest to the user:

D02NMF.2 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02NMF

Variable Specification Location
TCURR the current value of the independent variable RWORK(19)
HLAST last step size successfully used by the integrator RWORK(15)
HNEXT step size that the integrator proposes to take on the

next step
RWORK(16)

HMIN minimum step size to be taken on the next step RWORK(17)
HMAX maximum step size to be taken on the next step RWORK(18)
NQU the order of the integrator used on the last step RWORK(10)

Users are advised to consult the description of MONITR in D02NBF for details on what optional
input can be made.

If Y is changed, then IMON must be set to 2 before return to D02NMF. If either of the values of
HMIN or HMAX are changed, then IMON must be set ≥ 3 before return to D02NMF. If HNEXT
is changed, then IMON must be set to 4 before return to D02NMF.

In addition the user can force D02NMF to evaluate the residual vector

y′ − g(t, y)

be setting IMON = 0 and INLN = 3 and then returning to D02NMF; on return to this monitoring
operation the residual vector will be stored in RWORK(50+2×NEQMAX+i), for i = 1, 2 . . . , NEQ.

Hereafter in this document this operation will be referred to as MONITR.
(iii) Evaluate the derivative.

This operation must evaluate the derivative vector for the explicit ordinary differential equation
system defined by

y′ = g(t, y)

where t is located in RWORK(19).

Hereafter in this document this operation will be referred to as FCN.

4 References

None.

5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and
re-entries, all parameters other than YDOT, RWORK, WKJAC, IMON, INLN and IRES must remain
unchanged.

1: NEQ — INTEGER Input

On initial entry: the number of differential equations to be solved.

Constraint: NEQ ≥ 1.

2: NEQMAX — INTEGER Input

On initial entry: an upper bound on the maximum number of differential equations to be solved
during the integration.

Constraint: NEQMAX ≥ NEQ.

3: T — real Input/Output

On initial entry: the value of the independent variable t. The input value of T is used only on the
first call as the initial point of the integration.

On final exit: the value at which the computed solution y is returned (usually at TOUT).

[NP3390/19/pdf] D02NMF.3

D02NMF D02 – Ordinary Differential Equations

4: TOUT — real Input

On initial entry: the next value of t at which a computed solution is desired. For the initial t, an
input value of TOUT is used to determine the direction of integration. Integration is permitted in
either direction (see also ITASK).

Constraint: TOUT �= T.

5: Y(NEQMAX) — real array Input/Output

On initial entry: the values of dependent variables (solution). On the first call the first NEQ
elements of y must contain the vector of initial values.

On final exit: the computed solution vector, evaluated at T (usually T = TOUT).

6: YDOT(NEQMAX) — real array Input

On intermediate re-entry: YDOT must be set to the derivatives as defined under the description of
IREVCM.

On final exit: the time derivatives y′ of the vector y at the last integration point.

7: RWORK(50+4∗NEQMAX) — real array Input/Output

On intermediate re-entry: elements of RWORK must be set to quantities as defined under the
description of IREVCM.

On intermediate exit: contains information for JAC, FCN and MONITR operations as described in
Section 3 and the parameter IREVCM.

8: RTOL(∗) — real array Input

Note: the dimension of the array RTOL must be at least 1 or NEQ (see ITOL).

On initial entry: the relative local error tolerance.

Constraint: RTOL(i) ≥ 0.0 for all relevant i (see ITOL).

9: ATOL(∗) — real array Input

Note: the dimension of the array ATOL must be at least 1 or NEQ (see ITOL).

On initial entry: the absolute local error tolerance.

Constraint: ATOL(i) ≥ 0.0 for all relevant i (see ITOL).

10: ITOL — INTEGER Input

On initial entry: a value to indicate the form of the local error test. ITOL indicates to D02NMF
whether to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be
satisfied is ‖ei/wi‖ < 1.0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOL(1) × |yi| + ATOL(1)
2 scalar vector RTOL(1) × |yi| + ATOL(i)
3 vector scalar RTOL(i) × |yi| + ATOL(1)
4 vector vector RTOL(i) × |yi| + ATOL(i)

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: 1 ≤ ITOL ≤ 4.

11: INFORM(23) — INTEGER array Workspace

D02NMF.4 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02NMF

12: YSAVE(NEQMAX,NY2DIM) — real array Workspace
13: NY2DIM — INTEGER Input

On initial entry: the second dimension of the array YSAVE as declared in the (sub)program from
which D02NMF is called. An appropriate value for NY2DIM is described in the specifications of
the integrator setup routines D02NVF and D02NWF. This value must be the same as that supplied
to the integrator setup routine.

14: WKJAC(NWKJAC) — real array Input/Output

On intermediate re-entry: elements of the Jacobian as defined under the description of IREVCM.
If a numerical Jacobian was requested then WKJAC is used for workspace.

On intermediate exit: the Jacobian is overwritten.

15: NWKJAC — INTEGER Input

On initial entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NMF is called. The actual size depends on the linear algebra method used. An appropriate
value for NWKJAC is described in the specifications of the linear algebra setup routines D02NSF,
D02NTF and D02NUF for full, banded and sparse matrix linear algebra respectively. This value
must be the same as that supplied to the linear algebra setup routine.

16: JACPVT(NJCPVT) — INTEGER array Workspace
17: NJCPVT — INTEGER Input

On initial entry: the dimension of the array JACPVT as declared in the (sub)program from which
D02NMF is called. The actual size depends on the linear algebra method used. An appropriate
value for NJCPVT is described in the specifications of the linear algebra setup routines D02NTF
and D02NUF for banded and sparse matrix linear algebra respectively. This value must be the same
as that supplied to the linear algebra setup routine. When full matrix linear algebra is chosen, the
array JACPVT is not used and hence NJCPVT should be set to 1.

18: IMON — INTEGER Input/Output

On intermediate exit: used to pass information between D02NMF and the MONITR operation (see
Section 3). With IREVCM = 9, IMON contains a flag indicating under what circumstances the
return from D02NMF occurred.

IMON = −2
Exit from D02NMF after IRES = 4 (set in the FCN operation (see Section 3)) caused an early
termination (this facility could be used to locate discontinuities).

IMON = −1
The current step failed repeatedly.

IMON = 0
Exit from D02NMF after a call to the internal nonlinear equation solver.

IMON = 1
The current step was successful.

On intermediate re-entry: IMON may be reset to determine subsequent action in D02NMF.

IMON = −2
Integration is to be halted. A return will be made from D02NMF to the (sub)program from
which D02NMF is called with IFAIL = 12.

IMON = −1
Allow D02NMF to continue with its own internal strategy. The integrator will try up to 3
restarts unless IMON is set �= −1.

IMON = 0
Return to the internal nonlinear equation solver, where the action taken is determined by the
value of INLN (see below).

IMON = 1
Normal return to D02NMF to continue integration.

[NP3390/19/pdf] D02NMF.5

D02NMF D02 – Ordinary Differential Equations

IMON = 2
Restart the integration at the current time point. The integrator will restart from order 1
when this option is used. The solution Y, provided by the MONITR operation (see Section 3),
will be used for the initial conditions.

IMON = 3
Try to continue with the same step size and order as was to be used before entering the
MONITR operation (see Section 3). HMIN and HMAX may be altered if desired.

IMON = 4
Continue the integration but using a new value HNEXT and possibly new values of HMIN and
HMAX.

19: INLN — INTEGER Input

On intermediate re-entry: with IMON = 0 and IREVCM = 9, INLN specifies the action to be taken
by the internal nonlinear equation solver. By setting INLN = 3 and returning to D02NMF, the
residual vector is evaluated and placed in RWORK(50 + 2 × NEQMAX + i), for i = 1, 2, . . . , NEQ,
and then the MONITR operation (see Section 3) is invoked again. At present this is the only option
available: INLN must not be set to any other value.

20: IRES — INTEGER Input/Output

On intermediate exit: with IREVCM = 1, 2, 3, 4 or 5, IRES contains the value 1.

On intermediate re-entry: IRES should be unchanged unless one of the following actions is required
of D02NMF in which case IRES should be set accordingly.

IRES = 2

indicates to D02NMF that control should be passed back immediately to the (sub)program
from which D02NMF is called with the error indicator set to IFAIL = 11.

IRES = 3

indicates to D02NMF that an error condition has occurred in the solution vector, its time
derivative or in the value of t. The integrator will use a smaller time step to try to avoid this
condition. If this is not possible D02NMF returns to the (sub)program from which D02NMF
is called with the error indicator set to IFAIL = 7.

IRES = 4

indicates to D02NMF to stop its current operation and to enter the MONITR operation (see
Section 3) immediately.

21: IREVCM — INTEGER Input/Output

On initial entry: IREVCM must contain 0.

On intermediate re-entry: should remain unchanged.

On intermediate exit: indicates what action the user must take before re-entering. The possible exit
values of IREVCM are 1, 3, 4, 5, 8, 9, 10, which should be interpreted as follows:

IREVCM = 1, 3, 4 and 5

indicates that an FCN operation (see Section 3) is required: y′ = g(t, y) must be supplied,
where Y(i) is located in yi, for i = 1, 2, . . . , NEQ.

For IREVCM = 1 or 3, y′
i should be placed in location RWORK(50 + 2 × NEQMAX + i), for

i = 1, 2, . . . , NEQ.

For IREVCM = 4, y′
i should be placed in location RWORK(50 + NEQMAX + i), for

i = 1, 2, . . . , NEQ.

For IREVCM = 5, y′
i should be placed in location YDOT(i), for i = 1, 2, . . . , NEQ.

D02NMF.6 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02NMF

IREVCM = 8

indicates that a JAC operation (see Section 3) is required: the Jacobian matrix must be
supplied.

If full matrix linear algebra is being used, then the (i, j)th element of the Jacobian must be
stored in WKJAC((j − 1) × NEQ + i).

If banded matrix linear algebra is being used then the (i, j)th element of the Jacobian must be
stored in WKJAC((i−1)×mB +k), where mB = mL +mU +1 and k = min(mL − i+1, 0)+ j;
here mL and mU are the number of sub-diagonals and super-diagonals, respectively, in the
band.

If sparse matrix linear algebra is being used then D02NRF must be called to determine which
column of the Jacobian is required and where it should be stored.

CALL D02NRF(J,IPLACE,INFORM)

will return in J the number of the column of the Jacobian that is required and will set
IPLACE = 1 or 2. If IPLACE = 1, then the (i, j)th element of the Jacobian must be stored in
RWORK(50+2×NEQMAX+ i); otherwise it must be stored in RWORK(50+NEQMAX+ i).

IREVCM = 9

indicates that a MONITR operation (see Section 3) can be performed.
IREVCM = 10

indicates that the current step was not successful, due to error test failure or convergence test
failure. The only information supplied to the user on this return is the current value of the
independent variable t, located in RWORK(19). No values must be changed before re-entering
D02NMF; this facility enables the user to determine the number of unsuccessful steps.

On final exit: IREVCM = 0 indicated the user-specified task has been completed or an error has
been encountered (see descriptions for ITASK and IFAIL.

Constraint: IREVCM = 0, 1, 3, 4, 5, 8, 9, 10.

22: ITASK — INTEGER Input

On initial entry: the task to be performed by the integrator. The permitted values for ITASK and
their meanings are detailed below:

ITASK = 1

normal computation of output values of y(t) at t = TOUT (by overshooting and interpolating).
ITASK = 2

take one step only and return.
ITASK = 3

stop at the first internal integration point at or beyond t = TOUT and return.
ITASK = 4

normal computation of output values of y(t) at t = TOUT but without overshooting
t = TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
prior to the first call to the integrator, or specified in the optional input routine prior to a
continuation call. TCRIT may be equal to or beyond TOUT, but not before it in the direction
of integration.

ITASK = 5

take one step only and return, without passing TCRIT. TCRIT must be specified as under
ITASK = 4.

Constraint: 1 ≤ ITASK ≤ 5.

[NP3390/19/pdf] D02NMF.7

D02NMF D02 – Ordinary Differential Equations

23: ITRACE — INTEGER Input

On initial entry: the level of output that is printed by the integrator. ITRACE may take the value
−1, 0, 1, 2 or 3. If ITRACE < −1, then −1 is assumed and similarly if ITRACE > 3, then 3 is
assumed. If ITRACE = −1, no output is generated. If ITRACE = 0, only warning messages are
printed on the current error message unit (see X04AAF). If ITRACE > 0, then warning messages are
printed as above, and on the current advisory message unit (see X04ABF) output is generated which
details Jacobian entries, the nonlinear iteration and the time integration. The advisory messages
are given in greater detail the larger the value of ITRACE.

24: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

6 Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL = 1

On entry, the integrator detected an illegal input, or that a linear algebra and/or integrator setup
routine has not been called prior to the call to the integrator. If ITRACE ≥ 0, the form of the
error will be detailed on the current error message unit (see X04AAF).

IFAIL = 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL = 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Y(1),Y(2),...,Y(NEQ) contain the computed
values of the solution at the current point T.

IFAIL = 4

There were repeated error test failures on an attempted step, before completing the requested task,
but the integration was successful as far as T. The problem may have a singularity, or the local
error requirements may be inappropriate.

IFAIL = 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an inaccurate
Jacobian matrix or one which is incorrectly computed.

IFAIL = 6

Some error weight wi became zero during the integration (see description of ITOL). Pure relative
error control (ATOL(i) = 0.0) was requested on a variable (the ith) which has now vanished. The
integration was successful as far as T.

IFAIL = 7

The FCN operation, (see Section 3), set the error flag IRES = 3 continually despite repeated
attempts by the integrator to avoid this.

IFAIL = 8

Not used for this integrator.

D02NMF.8 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02NMF

IFAIL = 9
A singular Jacobian ∂r

∂y has been encountered. This error exit is unlikely to be taken when
solving explicit ordinary differential equations. The user should check his problem formulation
and Jacobian calculation.

IFAIL = 10
An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL = 11
The FCN operation, (see Section 3), signalled the integrator to halt the integration and return by
setting IRES = 2. Integration was successful as far as T.

IFAIL = 12
The MONITR operation, (see Section 3), set IMON = −2 and so forced a return but the integration
was successful as far as T.

IFAIL = 13
The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when the user is
not operating in one step mode, that is when ITASK �= 2 or 5).

IFAIL = 14
The values of RTOL and ATOL are so small that the routine is unable to start the integration.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the parameters RTOL
and ATOL, and to a much lesser extent by the choice of norm. Users are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying
solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is the user is advised to choose ITOL = 1 with ATOL(1) small but positive).

8 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem; also on the type of linear algebra being used. For further
details see Section 8 of the documents for D02NBF (full matrix), D02NCF (banded matrix) or D02NDF
(sparse matrix).

In general the user is advised to choose the backward differentiation formula option (setup routine
D02NVF) but if efficiency is of great importance and especially if it is suspected that ∂g

∂y has complex
eigenvalues near the imaginary axis for some part of the integration, the user should try the BLEND
option (setup routine D02NWF).

9 Example

We solve the well-known stiff Robertson problem

a′ = −0.04a+1.0E4bc

b′ = 0.04a−1.0E4bc−3.0E7b2

c′ = 3.0E7b2

over the range [0,10] with initial conditions a = 1.0 and b = c = 0.0 and with scalar error control
(ITOL = 1). We integrate until we pass TOUT = 10.0 providing C1 interpolation at intervals of 2.0
through a MONITR operation. The integration method used is the BDF method (setup routine D02NVF)
with a modified Newton method. We specify that the Jacobian is a full matrix (setup routine D02NSF)
and is to be calculated numerically.

[NP3390/19/pdf] D02NMF.9

D02NMF D02 – Ordinary Differential Equations

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02NMF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, NEQMAX, NRW, NINF, NWKJAC, NJCPVT, MAXORD,

+ NY2DIM, MAXSTP, MXHNIL
PARAMETER (NEQ=3,NEQMAX=NEQ,NRW=50+4*NEQMAX,NINF=23,

+ NWKJAC=NEQMAX*(NEQMAX+1),NJCPVT=1,MAXORD=5,
+ NY2DIM=MAXORD+1,MAXSTP=200,MXHNIL=5)
INTEGER LACORB, LSAVRB
PARAMETER (LACORB=50+NEQMAX,LSAVRB=LACORB+NEQMAX)
real H0, HMAX, HMIN, TCRIT
PARAMETER (H0=0.0e0,HMAX=10.0e0,HMIN=1.0e-10,TCRIT=0.0e0)
LOGICAL PETZLD
PARAMETER (PETZLD=.FALSE.)

* .. Local Scalars ..
real H, HLAST, HNEXT, HU, T, TC, TCUR, TOLSF, TOUT,

+ XOUT
INTEGER I, IFAIL, IFLAG, IMON, IMXER, INLN, IOUT, IRES,

+ IREVCM, ITASK, ITOL, ITRACE, LACOR1, LACOR2,
+ LACOR3, LSAVR1, LSAVR2, LSAVR3, NITER, NJE, NQ,
+ NQU, NRE, NST

* .. Local Arrays ..
real ATOL(NEQMAX), CONST(6), RTOL(NEQMAX), RWORK(NRW),

+ WKJAC(NWKJAC), Y(NEQMAX), YDOT(NEQMAX),
+ YSAVE(NEQMAX,NY2DIM)
INTEGER INFORM(NINF), JACPVT(NJCPVT)
LOGICAL ALGEQU(NEQMAX)

* .. External Subroutines ..
EXTERNAL D02NMF, D02NSF, D02NVF, D02NYF, D02XKF, X04ABF

* .. Intrinsic Functions ..
INTRINSIC INT, real

* .. Executable Statements ..
WRITE (NOUT,*) ’D02NMF Example Program Results’
WRITE (NOUT,*)
CALL X04ABF(1,NOUT)

*
* Integrate to TOUT by overshooting TOUT (ITASK=1) using B.D.F.
* formulae with a Newton method. Default values for the array CONST
* are used. Employ scalar tolerances and the Jacobian is evaluated
* internally. On the reverse communication call equivalent to the
* MONITR call in forward communication routines carry out
* interpolation using D02XKF.
*

T = 0.0e0
TOUT = 10.0e0
ITASK = 1
IOUT = 1
XOUT = 2.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
ITOL = 1

D02NMF.10 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02NMF

RTOL(1) = 1.0e-4
ATOL(1) = 1.0e-7
DO 20 I = 1, 6

CONST(I) = 0.0e0
20 CONTINUE

IFAIL = 0
*

CALL D02NVF(NEQMAX,NY2DIM,MAXORD,’Newton’,PETZLD,CONST,TCRIT,HMIN,
+ HMAX,H0,MAXSTP,MXHNIL,’Average-L2’,RWORK,IFAIL)
CALL D02NSF(NEQ,NEQMAX,’Numerical’,NWKJAC,RWORK,IFAIL)

*
LACOR1 = LACORB + 1
LACOR2 = LACORB + 2
LACOR3 = LACORB + 3
LSAVR1 = LSAVRB + 1
LSAVR2 = LSAVRB + 2
LSAVR3 = LSAVRB + 3
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
WRITE (NOUT,99999) T, (Y(I),I=1,NEQ)

*
* Soft fail and error messages only

IREVCM = 0
ITRACE = 0

40 IFAIL = 1
*

CALL D02NMF(NEQ,NEQMAX,T,TOUT,Y,YDOT,RWORK,RTOL,ATOL,ITOL,INFORM,
+ YSAVE,NY2DIM,WKJAC,NWKJAC,JACPVT,NJCPVT,IMON,INLN,
+ IRES,IREVCM,ITASK,ITRACE,IFAIL)

*
IF (IREVCM.NE.0) THEN

IF (IREVCM.EQ.1 .OR. IREVCM.EQ.3) THEN
* Equivalent to FCN evaluation in forward communication
* routines

RWORK(LSAVR1) = -0.04e0*Y(1) + 1.0e4*Y(2)*Y(3)
RWORK(LSAVR2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) - 3.0e7*Y(2)

+ *Y(2)
RWORK(LSAVR3) = 3.0e7*Y(2)*Y(2)

ELSE IF (IREVCM.EQ.4) THEN
* Equivalent to FCN evaluation in forward communication
* routines

RWORK(LACOR1) = -0.04e0*Y(1) + 1.0e4*Y(2)*Y(3)
RWORK(LACOR2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) - 3.0e7*Y(2)

+ *Y(2)
RWORK(LACOR3) = 3.0e7*Y(2)*Y(2)

ELSE IF (IREVCM.EQ.5) THEN
* Equivalent to FCN evaluation in forward communication
* routines

YDOT(1) = -0.04e0*Y(1) + 1.0e4*Y(2)*Y(3)
YDOT(2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) - 3.0e7*Y(2)*Y(2)
YDOT(3) = 3.0e7*Y(2)*Y(2)

ELSE IF (IREVCM.EQ.9) THEN
* Equivalent to MONITR call in forward communication routines

IF (IMON.EQ.1) THEN
TC = RWORK(19)
HLAST = RWORK(15)
HNEXT = RWORK(16)
NQU = INT(RWORK(10))

60 CONTINUE

[NP3390/19/pdf] D02NMF.11

D02NMF D02 – Ordinary Differential Equations

IF (TC-HLAST.LT.XOUT .AND. XOUT.LE.TC) THEN
IFLAG = 1

*
CALL D02XKF(XOUT,RWORK(LSAVR1),NEQ,YSAVE,NEQMAX,

+ NY2DIM,RWORK(LACOR1),NEQ,TC,NQU,HLAST,
+ HNEXT,IFLAG)

*
IF (IFLAG.NE.0) THEN

IMON = -2
ELSE

WRITE (NOUT,99999) XOUT, (RWORK(LSAVRB+I),I=1,NEQ)
IOUT = IOUT + 1
XOUT = real(IOUT)*2.0e0
IF (IOUT.LT.6) GO TO 60

END IF
END IF

END IF
ELSE IF (IREVCM.EQ.2 .OR. IREVCM.EQ.6 .OR. IREVCM.EQ.7 .OR.

+ IREVCM.EQ.8) THEN
WRITE (NOUT,*)
WRITE (NOUT,99995) ’Illegal value of IREVCM = ’, IREVCM
STOP

END IF
GO TO 40

ELSE
IF (IFAIL.EQ.0) THEN

*
CALL D02NYF(NEQ,NEQMAX,HU,H,TCUR,TOLSF,RWORK,NST,NRE,NJE,

+ NQU,NQ,NITER,IMXER,ALGEQU,INFORM,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,99997) ’ HUSED = ’, HU, ’ HNEXT = ’, H,

+ ’ TCUR = ’, TCUR
WRITE (NOUT,99996) ’ NST = ’, NST, ’ NRE = ’, NRE,

+ ’ NJE = ’, NJE
WRITE (NOUT,99996) ’ NQU = ’, NQU, ’ NQ = ’, NQ,

+ ’ NITER = ’, NITER
WRITE (NOUT,99995) ’ Max err comp = ’, IMXER
WRITE (NOUT,*)

ELSE
WRITE (NOUT,*)
WRITE (NOUT,99998) ’Exit D02NMF with IFAIL = ’, IFAIL,

+ ’ and T = ’, T
END IF

END IF
STOP

*
99999 FORMAT (1X,F8.3,3(F13.5,2X))
99998 FORMAT (1X,A,I2,A,e12.5)
99997 FORMAT (1X,A,e12.5,A,e12.5,A,e12.5)
99996 FORMAT (1X,A,I6,A,I6,A,I6)
99995 FORMAT (1X,A,I4)

END

9.2 Program Data

None.

D02NMF.12 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02NMF

9.3 Program Results

D02NMF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
2.000 0.94161 0.00003 0.05836
4.000 0.90551 0.00002 0.09446
6.000 0.87926 0.00002 0.12072
8.000 0.85854 0.00002 0.14144

10.000 0.84135 0.00002 0.15863

HUSED = 0.90178E+00 HNEXT = 0.90178E+00 TCUR = 0.10766E+02
NST = 55 NRE = 128 NJE = 16
NQU = 4 NQ = 4 NITER = 78
Max err comp = 3

[NP3390/19/pdf] D02NMF.13 (last)

